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Abstract

An experimental method to determine the stress—elongation relation for a thin adhesive layer loaded in peel is
presented. The method is based on equilibrium of the energetic forces acting on a DCB-specimen. These energetic forces
are identified to be associated with the geometrical positions of the acting loads and the start of the adhesive layer. The
first energetic force is shown to be given by the product of the force and the rotation of the loading point. The second
energetic force is shown to be given by the area under the stress—elongation curve for the adhesive layer. Using
equilibrium of these energetic forces, the shape of the stress—elongation curve is determined. A test set-up is developed
to facilitate the experiments. Special consideration is given to the accuracy of the measurement of the elongation of the
adhesive. Results from two sets of experiments with slightly varying geometry are presented. The main result is that the
stress—elongation relation can be described by a curve divided into three parts; initially the stress increases propor-
tionally to the elongation. This corresponds to a linear elastic behaviour of the layer. The next part is given by a
constant limiting stress. The curve ends with a parabolically softening part. After this point, a crack has been initiated in
the adhesive. The experimental results are first compared to an asymptotic analysis using linear elastic fracture me-
chanics. This shows that the new method to evaluate the fracture energy gives consistent results. The experiments are
also simulated using the measured stress—elongation law. Good agreement with the experiments is achieved which
further validates the method. The fracture energy and the maximum peel stress are found to agree well within each set
of experiments. Some variation is found between the two sets. This is accredited to differences in fracture initiation.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

During recent years, the automobile industry has shown an increasing interest in adhesive joining. It has
been recognised that the torsional rigidity and the fatigue strength of a car can be substantially increased if
the conventional spot welds are complemented with adhesive bonding. Adhesive joining is also a technique
that works well when introducing un-conventional materials such as composites and aluminium alloys in
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the production. However, modern design methods are critically dependent on accurate constitutive models
to facilitate simulation of the structure early in the design process. There is therefore a need for good
material models and data for the numerical methods. These are, however, not easy to determine for thin
adhesive layers.

An alternative to constitutive modelling is the use of fracture mechanics. The success of this method is
critically dependent on the possibility to disregard the actual fracture processes taking place in the adhesive.
To this end, the process zone should be embedded in a “simply” parameterised stress field. The parameters
then control the fracture process in the sense that the same parameters that give crack growth for one
structure also give crack growth for any other structure. In small scale yielding (SSY) the size of the process
zone shall be much smaller than any other length scale. This condition can be formulated as in the ASTM
condition.

2 /
1>2.5(K1°> _25GE (1)
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where / is the smallest characteristic length scale of the problem, and K|, oy and G, are the fracture
toughness, the yield strength and the fracture energy of the adhesive, respectively. Moreover, E' = E for
plane stress and E/(1 — v?) for plane strain; £ and v are Young’s modulus and Poisson’s ratio, respectively.
In most cases !/ is either the thickness of the adhesive layer or the length of a preexisting crack. With a
typical adhesive layer thickness of only a fraction of a millimeter, the condition is too severe. Thus, SSY is
not applicable for most structural adhesives. Moreover, it is well known that the fracture energy and
morphology varies with the thickness of the adhesive layer (cf. e.g. Chai, 1988). It has also proven very hard
to correlate the bulk properties of adhesives with their behaviour in a thin and constrained layer (cf. e.g.
Adams et al., 1978; Adams and Coppendale, 1979; Xia and Hutchinson, 1994). However, simplified
analyses of adhesive joints based on through-thickness averages of stress and strain have often proven
successful. The basic variables are then the peel stress, o, the shear stress, 7, the elongation, w, and the shear
deformation, v, of the adhesive layer, cf. Fig. 1. In order to emphasize that the adhesive layer is treated as a
structural entity in this class of methods, we propose to name it the adhesive layer theory. For the case of a
thin and soft adhesive layer, the use of this theory is motivated by an asymptotic expansion analysis by
Klarbring (1991). Thus, for the development of engineering methods it appears more fruitful to use an
“adhesive layer” approach to the problem.

If the deformation gradient along the adhesive layer is zero then the state of the adhesive is homogeneous
apart from small regions at the free boundaries of the layer. With a brittle adhesive, fracture is expected to
be governed by the details of the state at these boundaries. With a ductile adhesive, the fields are smeared

Fig. 1. Basic deformation modes of an adhesive layer with thickness 7. Conjugated stress and deformation measures are (w, o) for peel
and (v, 1) for shear.
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out and fracture can be predicted by the average stress. This is indicated in the experiments by cf. e.g.
Adams et al. (1978) and Adams and Coppendale (1979). Thus, the use of g, 7, w, and v as basic variables is
well motivated. With a small gradient along the adhesive layer, the approach should still be applicable, cf.
the notch sensitivity results by Serensen (2002). A criteria for the validity of the adhesive layer theory is that
the process zone shall be large compared to the thickness of the layer. Otherwise, the gradients through the
thickness of the layer should be taken into consideration. Now, if the process zone is small compared to the
remaining relevant length scales but large as compared to the layer thickness, the fracture process is ad-
equately modelled using only one parameter of the loading. This is usually chosen as the energy release rate,
J. On the other hand, with a process zone that is large compared to the layer thickness and other relevant
length scales, a complete constitutive description is needed.

The adhesive layer theory is well suited for use with the finite element method (cf. Stigh, 1987, 1988;
Edlund, 1992; Wernersson and Gustafsson, 1987; Yang et al., 1999, 2001a,b; Serensen, 2002). A consti-
tutive law can be formulated in terms of ¢, 7, w, v and a number of internal variables to model the
non-elastic development of the layer under stress. A framework for development of the law is given by
Alfredsson and Stigh (2003). In order to develop the law it is necessary to know the behaviour of the layer
in simple load cases. To this end Olsson and Stigh (1989) theoretically solved an inverse problem for the
DCB-specimen, cf. Fig. 2. That is, given the elongation w of the adhesive layer at its start, the applied force
F(w), and the rotation of the loading point 0(w), the stress—elongation relation is given by

d(F0)
dw @

SN

a(w) =

where b is the width of the specimen. This formula was derived based on the Euler—Bernoulli theory for
elastic beams and assuming the existence of a functional relation o(w). An experimental method and some
preliminary experimental results are reported by Stigh and Andersson (2000). A critical examination of the
criteria for a valid measurement is given by Andersson and Stigh (2001).

Recently, similar approaches have been presented. Serensen (2002) use a DCB-specimen loaded with
bending moments M. In this case the J-integral can be measured continuously during an experiment
through

M(w)?

where B is the width, A the height and £ Young’s modulus of the adherends. Using
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Fig. 2. DCB-specimen with measured quantities F, 6, A and w.
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and simultaneous measurement of w yields o(w). It can be noted that the same approach is taken by
Serensen and Jacobsen (1998), Jacobsen and Serensen (2001) and Fernberg and Berglund (2001) in mea-
surements of the bridging law for composites. The main drawback with this approach, as compared to the
present, is that the details of the adherends are involved in Eq. (3). Thus, a number of extra measurements
need to be made, i.e. the geometry and the elastic modulus of the adherends. Especially the geometrical
parameters greatly affect the quality of the measurements through the powers two and three in the equa-
tion.

Another approach to the problem of determining the stress—deformation relation is presented by Yang
et al. (1999, 2001a,b). The constitutive behaviour is described by the ad hoc stress—elongation law of Fig. 3.
This law is characterised by the work of separation per unit area of crack advance, I'y (equal to the area
under the stress—elongation curve) the peak stress, oo and two shape parameters 0, /J. and d,/d., cf. Fig. 3.
Yang et al. (1999, 2001a,b) perform both experiments and numerical analyses on test specimens where the
adherends are exposed to large plastic strains. By fitting the numerical results to the experiments the
parameters Iy and o, are determined. The remaining two parameters are considered less important and
they are chosen as 6,/5. = 0.15 and 6,/. = 0.5. Using the same parameters on a different geometry, they
capture, both qualitatively and quantitatively, the characteristics of the experiments. In variance with this
method, the present experimental method does not require an a priori defined constitutive law with free
parameters to be determined.

The underlying theory for the determination of the o—w curve for the DCB-specimen is derived in the
following section.

2. Theory

In an attempt to derive the field equations of elasticity similarly as the field equations of elastostatics,
Eshelby (1951) introduced the concept of the energetic force associated with an object in an elastostatic
field. For planar problems, with x, denoting the Cartesian components of the position vector of an object,
the Cartesian components J, of the energetic force is defined by

on
— 5

ox,, (5)

where IT denotes the potential energy per unit width of the body, i.e. the sum of the strain energy of the
body and the potential energy of the prescribed forces acting on the body. The form of Eq. (5) immediately

J, =

OA
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3, 5, 5.5

Fig. 3. Stress—elongation law used by Yang et al. (1999, 2001a,b).
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implies the meanings of the notion of object and the concept of equilibrium of energetic forces. All features
of a body and its loading that alters the potential energy of the body when they are moved are to be
considered as objects in this respect. For instance, if the motion of a boundary of a body alters the potential
energy, then the boundary is an object and an energetic force is associated with it. If all objects are con-
sidered, the simultaneous motion of them by the same amount will move the body and its loading as a rigid
body. Hence, it will not change the potential energy. Thus, the sum of all energetic forces is zero, i.e.
equilibrium in the conventional sense prevails for energetic forces. It should be recognised that the material
must be elastic, or at least, act as if it is elastic. This is a critical requirement in the present application and it
will be checked carefully. If the material deforms non-elastically, the concept of energetic forces still applies
if the material never experiences reversed loading from a non-elastically deformed state. Moreover, if the
material is elastically homogeneous in the &, direction then the energetic force in that direction can be
calculated from the path independent integral

J, = /(Wna — Tu,,)dS (6)
s

Here, n, is the outward normal to the path § enclosing the object, T, = o,,n, is the traction vector and
W = [0,5de,p is the strain energy density.

Considering the equilibrium of the energetic forces acting in the horizontal direction on the DCB-
specimen of Fig. 2 it is immediately recognised that the potential energy is given by the positions of the two
forces and the position of the start of the adhesive layer. The other conceivable objects, i.e. the left and right
boundaries of the specimen are unloaded if the specimen is long enough. Thus, altering their positions will
leave the potential energy constant. Denoting the horizontal components of the energetic forces associated
with the two forces Jr and the energetic force associated with the start of the adhesive layer J,, equilibrium
requires

J, +2J =0 (7)

Thus, it remains to determine J, and Jg.

In order to determine J, consider an integration path A to B according to Fig. 4. Consistent with the
assumed deformation modes of the adhesive layer, cf. Fig. 1, we will now assume that the boundary A to
B is a vertical straight line. Along this line the traction vector T, is zero, thus the horizontal component of
Eq. (6) becomes
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Fig. 4. (a) DCB-specimen with indicated integration paths. (b) Free-body diagram over integration path for the force.
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5| Wy (s)

Here and subsequently, the coordinate systems and symbols defined in Fig. 4 are used. Along AB, the only
non-zero stress component is the peel stress o. If we assume, consistently with the assumed deformations
modes, that the strain is constant through the thickness, we arrive at

Jo = /0 t H /0 wa(fv)dﬂ/]dy— /0 " () d (9)

Next, the J-integral is applied to the contour that incorporates the upper force F, cf. Fig. 4. The only path
contributing to J is the path CD. The strain energy density is W = (1/2)0,.€,, since the shear strain is zero
in the Euler-Bernoulli beam theory. According to the theory

| F¢ _ O _ 3F "
O = ——51, 6xx_f7 Txy__ﬂ(l_é"ﬁ) (10)
with 7, = bh*/12. With the rotation dv/dx = —0(&), insertion in Eq. (6) yields
F?& FO) _ F
— - == 0 11
o e CGR0) (1)

where the rotation ¢(¢) = FE /2EIL is introduced. The right hand side now appears to be a function of ¢&.
However, the J-integral is path independent and shall not depend on &. This is indeed the case which can be
shown by determining the J-integral for two different paths

E—0: Js(F,0) = —F0(0)/b

F =

E=a: Je(F,a) = —F|p(a) + 0(a)]/b (12)
Taking the difference yields
Je(F.@) = Jr(F,0) = = [0(0) ~ pla) - 0(a)] (13)

which equals zero since 0(0) = ¢(a) + 0(a) according to the beam theory. Thus, the path independence is
retained and

Fo
JF:_T (14)

A similar derivation performed on a path surrounding the lower force F' gives the same result.
Using the concept of equilibrium of energetic forces, cf. Eq. (7), we can now write

v o
/Oo(w)dWZT (15)

Differentiation yields Eq. (2).

3. Experimental set-up, specimens and adhesive

An experiment consists of a gradual separation of the loading points and a simultaneous measurement of
F, 0 and w. Multiplying F with 0 and divide by b gives Jr according to Eq. (14). In order to find the o—w
curve, the product F0 is differentiated with respect to w according to Eq. (2). However, numerical differ-
entiation of discretely measured data involves calculating the difference of quantities of nearly equal
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magnitude impaired with measurement errors. Thus, the errors add up and may destroy the accuracy. In
the design of the test equipment the accuracy of the transducers are of utmost importance. Stigh and
Andersson (2000) report Monte-Carlo simulations of the experiments. These simulations are facilitated by
an exact solution of the beam-equation-formulation of the DCB-problem with a saw-tooth formed o—w
curve (cf. Stigh, 1988). The simulations show that the measurement of the elongation of the adhesive must
be performed with extra care, especially since the present adhesive (Ciba-Geigy XW1044-3) ! show a
fracture strain of only about 5% in uniaxial tension. Moreover, Wernersson and Gustafsson (1987) report
an elastic part of the o—w curve of about 10-30% of the entire curve for wood adhesives. Considering these
results, the expected elastic part of the curve is about 1-3 pm. This clearly indicates that a very sensitive
measurement method should be used. The chosen method is an interferometric strain/displacement method
(ISDG) developed by Sharpe (1989). Here a brief description is given. For details see Sharpe (1989).

3.1. Measurement of the elongation of the adhesive

Two Vicker indentations are made on each adherend at the start of the adhesive layer, cf. Fig. 5. The
indentations have four planar surfaces that act as small mirrors; the size ¢ is typically 50-60 um. These
indentations are illuminated with a laser. Due to the shape of the indentations, the laser beam is reflected
(¢ = 44°) in four directions. As a result, four diffraction patterns become visible. Due to the difference in
path length between the planes of the indentations and the detection plane, interference patterns become
visible inside the diffraction patterns.

By following the position, m, of a fringe it is possible to determine the elongation w. Elementary optics
gives

A

Aw = sin ¢

Am (16)

The total elongation is given by w = > Aw. The factor 1/ sin ¢ is 0.911 pum in this case using a laser with the
wavelength 1 = 632.8 nm. Hence, when a minimum has travelled one position, i.e. Am = 1, the adhesive has
elongated 0.911 pm. The interference pattern is recorded using two CCD-cameras, cf. Fig. 5. Two cameras
are used to cancel out any rigid body translation of the specimen. The present CCD-cameras have 739 x 575
pixels in a rectangular area with the size 6.3 x4.8 mm. Since the data processing is rather time consuming
only 200 columns and 20 rows of the pixels are used in the experiments, cf. Fig. 6. Furthermore, in order to
decrease the influence of disturbances in the interference pattern, the intensity of each column of pixels is
summed up. This gives intensity curves according to Fig. 6.

By measuring the distance, AX, which a minimum has moved, Am is determined from Am = AX /X,
where X is the distance between two minima. The increment in w of the adhesive layer, between two
measurements, is then given by Eq. (16).

In an experiment, it is appropriate to record five minima in the area of 200x20 pixels, cf. Fig. 6. The
positions of three minima are followed in the evaluation of the interference patterns. The resolution of the
w-measurement is estimated as follows; if three minima are followed there are roughly five fringe distances
captured along the 200 pixels recorded by the CCD-camera. Hence, there are 40 pixels between two
minima; a distance corresponding to 0.9 um. Thus, one pixel corresponds to about 23 nm.

The actual accuracy of the w-measurement is difficult to determine. This is due to noise in the inter-
ference pattern that might produce false minima. These could easily be minimised using a “low pass filter”.
In effect, this is done by summing the intensity of light from the columns of pixels as described above.
However, if the pattern contains too much noise it is possible that the process places the minima at

! Now renamed DOW BETAMATE XW1044-3.
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Laser

X

Fig. 5. Left: Two Vickers indentations placed on each adherend at the start of the adhesive layer. Right: Laser light reflected by the
indentations giving interference patterns at positions of the CCD-cameras.

L

Fig. 6. Left: Interference pattern recorded in a CCD-camera. The pixels (20x200) that are used in the w-measurements are indicated
with the rectangular area in the interference pattern. Right: Recorded pattern, calculated by summing the columns. The motions of the
pattern is indicated by the dashed line.

incorrect positions, i.e. both X and AX might have large errors. Therefore it is of utmost importance that
the surface preparation is carried out carefully. It should also be emphasised that in each experiment the
w-measurement is evaluated manually.

The main drawback with the present system using CCD-cameras is that it is difficult to record fast
processes, i.e. with increments of displacement larger than the distance between two minima (0.9 pum).
Under these circumstances, the experiments may give false values. A way to speed up the process is to use a
so-called linear diode array (cf. Sharpe, 1989). In the present system the time between two measurements is
0.5s.

The angle ¢ is an additional source of error. This has not been considered here. A deviation in ¢ will
occur if the penetration of the indentation is not made exactly perpendicular to the surface of the adherend.
However, the influence is probably small since the specimens are thoroughly manufactured.

3.2. Tensile test machine

The test machine utilised in these experiments is shown in Fig. 7. It is manufactured by Swetest
Instrument AB (model 168) and has a load capacity of 1000 N.
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Shaft encoder

Force tranducer

Fig. 7. Test machine.

During an experiment the yokes move away from each other symmetrically in relation to a midpoint
between them, thus minimising any rigid body displacement of the specimen. The yokes slide along two
linear rails. The movement is given by two ball screws, each rotating in opposite direction. If an ordinary
tensile machine would be employed, the Vicker indentations might move out of the laser light. This would
make it impossible to measure the elongation w. The clamping arrangement is shown in Fig. 8. The test
specimen is attached to the yokes via the forks and the grips. Four ball bearings make it possible for the
grips to rotate freely under loading thus minimising the applied bending moment at the loading points.

The force transducer is attached to one of the yokes. The right fork is connected to the force transducer
through a hole in the same yoke. The shaft encoder is connected to the left yoke and moves with it. The
shaft of the encoder is connected to the grips via a flexible coupling. Since the grips rotate with the test
specimen, the rotation of the loading point, 0, is measured. A linear displacement transducer is used to
measure the distance between the yokes. Due to the relatively stiff forks, it is reasonable to equate the
distance between the yokes to the distance A between the applied forces.

3.3. Specimens and adhesive

Two different sets of specimens were manufactured. Set 1 contains five specimens and Set 2 four. Both
sets are made of steel adherends with yield strength exceeding 470 MPa. The width of the adherends is
nominally 5 mm for Set 1 and 4.5 mm for Set 2. However, each specimen is measured individually and the
actual width is used in the evaluation of the experiments. The height of the adherends is 4.5 mm for Set 1
and 5 mm for Set 2. There are two substantial differences between the two sets of specimens. In Set 1 the
free length L is 78 mm and in Set 2 L is 50 mm, cf. Fig. 2. Secondly, the glued length of the adhesive layer is
35 mm for Set 1 and 65 mm for Set 2. Moreover, the two sets were manufactured at different times using
different steel alloys. The yield strength of the adherends is large enough to avoid any plastic deformation
during the experiments. This is checked both numerically and visually after the specimen has fractured. The
rate of separation, A, is about 0.009 m/s and is mainly limited by the time consuming w-measurement. The
thickness of the adhesive layer is nominally 0.2 mm. Unfortunately, for Set 2 the thickness of the adhesive
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Fig. 8. Clamping arrangement.

layer is found to vary along the layer. The experiments of Set 2 are however evaluated in the same way as
Set 1. Independent test results give the elastic modulus, the ultimate strength  and the fracture energy 2.22
GPa, 31.5 MPa, and 800 J/m?, respectively.

4. Experimental results

Results within each set of experiments vary only slightly. However, some variation is observed between
the two sets of experiments. Therefore, only one experiment from each set is presented here. All experi-
mental results are presented elsewhere (cf. Andersson, 2002) and the results are summarised in Table 1. In
this section, figures placed to the left are taken from Set 1, i.e. with the longer unbonded part; the figures to
the right are from Set 2. The results are first checked against a simplified analysis based on linear elastic
fracture mechanics (LEFM). Next, the J—w curves are presented and evaluated for the o—w relation.

4.1. Comparison with LEFM

Fig. 9 shows load vs. separation of the loading points from two experiments. To check if the curves are
reasonable, an asymptotic analysis based on linear elastic fracture mechanics is performed. This corre-
sponds to a rigid-brittle adhesive layer, cf. the dashed curves in Fig. 9. The curve is divided into two parts
corresponding to the phases prior to and after a crack starts to propagate. For a rigid-brittle adhesive layer,
elementary beam theory gives the F—A curve

203
F

=3 (17)

2 Strain rate=0.02 min~"'.
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Table 1

Geometrical data and constitutive parameters
Exp. b (mm) h (mm) L (mm) Je (J/m?) wy (um) wy (Lm) ws (um) go (MPa)  Init.
2 49 4.5 78 930 1 8 80 26.7 co
4 49 4.5 77 800 1.6 7 85 24.3 co
5 5 4.5 78 770 1 8 71 24.5 co
6 5 4.5 79 730 0.5 5 77 28 co
7 49 4.5 76 890 2.7 6 113 22 ad
10 4.1 5 51 740 2 20 60 19.3 ad
11 44 5 50 670 3 20 50 19 ad
12 44 5 49 910 2.5 16 77 20.1 ad
14 44 5 48.5 740 2.4 14.5 84 20.6 ad

Experiments 2-7 are from Set 1; experiments 10-14 from Set 2. The last column indicates type of crack initiation where ad indicates
adhesive fracture and co cohesive fracture, respectively.

,/\\ 100 | /I \\\\
60 | ./ o ! R
/I N~ - — 75+ /I R
= 40 |+ /' =z ',
= ; — 501
w ’/ LL ’
20 | 25 1 /,
0 L L L L L 0 L L L L L
o 1 2 3 4 5 00 05 10 15 20 25
A [mm] A [mm]

Fig. 9. Load vs. load point separation from two experiments. Left: Specimen from Set 1. Right: Specimen from Set 2. The solid lines are
experimental data; dashed lines correspond to an asymptotic analysis based on linear elastic fracture mechanics.

where L is constant during the first phase of the experiment. This is the first part of the dashed curves.
During the second phase, a crack propagates and consumes energy per unit crack area. The fracture energy
is given by

F?1?
Je = kL (18)

where F and L vary simultaneously in order for J, to remain constant during the second phase. Eliminating
L from Egs. (17) and (18) yields

Fe \/i (19)

where the constant 4 is given by 4 = b*\/J3Eh?/27. This relation is shown in Fig. 9 as the descending
dashed lines. The values of J, are taken as the maximum values of J during the experiments, cf. Fig. 10.
Except the value of L, geometrical data are taken as measured on the actual specimens. The value of L is set
to the nominal value, 78 mm for Set 1 and 50 mm for Set 2. In the simulations we neglect the flexibility of
the adhesive layer. As expected, the asymptotic curves in Fig. 9 lic above the experimental curves. It would
be interesting to compare the location of the start of crack propagation in the experiments and the simu-
lations. However, the interferometric method used to measure w made it necessary to make the experiments
in a dark room. Thus, no visual inspection of the specimen was possible during the experiment. It should be
noted that the initial stiffness is very sensitive to the geometrical data; both L and # are raised to the power
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Fig. 10. J vs. A during two experiments. Left: Curve from Set 1. Right: Curve from Set 2.

three in the expression for the stiffness. Thus, small errors in these data substantially affect the result.
Furthermore, the transducer used to measure A induces errors in the order of 3-5%.

The results in Fig. 9 also illustrates the discussion in the introduction on the use of fracture mechanics.
For many engineering applications the prediction of the behaviour of a DCB-like structures given by the
dashed lines in Fig. 9 is adequate. For these cases, only one parameter for the adhesive layer is necessary,
namely J..

4.2. Fvaluation of the J-curves

Fig. 10 shows the J-integral vs. the separation of the loading points, A. The curves are monotonically
increasing up to a value of approximately 800 N/m. Inspection of the fracture surfaces of the specimens
shows that for all except one of the specimens of Set 1 fracture initiates cohesively, i.e. inside the adhesive
layer. All specimens of Set 2 initially fracture adhesively, i.e. in the interface between the adhesive and the
adherend. This explains the difference in J. between the two sets.

After the maximum point, the curves are descending. According to the adhesive layer theory, J should
remain constant during crack propagation. Instead, the experiments show a decreasing value of J to an
apparent steady state value Ji. The values of Ji are only marginally smaller than J, for the experiments in
Set 1; in Set 2 the differences are substantial, the decrease is almost 50% (cf. Andersson, 2002). A difference
between the initiation and the propagation values of J is common in fracture mechanics. It is usually as-
cribed to plasticity of the material in the vicinity of the crack tip. In this case, one probable explanation is
that the local state of stress alters due to the formation of a sharp crack in the adhesive layer. This explains
some of the difference between J and J.. Moreover, the cracks initiating adhesively change direction after
about 1 mm of crack propagation and the remaining crack propagation is cohesive. It is tempting to ascribe
the large difference between Ji and J. to this change in crack path. However, the one experiment of Set 1
initially fracturing adhesively shows similar behaviour as the other experiments of Set 1, i.e. a small de-
crease of J. Thus, the change in crack path does not seem to be the major cause of the substantial decrease
of J in Set 2. Visual inspections of the specimens in Set 2 show that the thickness of the adhesive layer is
varying along the specimen. At the start and at the end, the adhesive layer has the specified thickness of 0.2
mm. However, after approximately 5-10 mm, from both ends of the bonded length, the layer is notably
thinner. This explains the large difference between Jg and J, for Set 2.

4.3. Stress—elongation relation

Fig. 11 shows the applied load vs. the elongation of the adhesive. The curves appear smooth and regular.
It is however not possible, with the present measurement system, to measure w larger than about 50 um due
to the problems described in Section 3.1. Therefore it is difficult to determine the complete o—w curve from
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Fig. 11. Applied force vs. measured elongation of the adhesive layer. Left: Curve from Set 1. Right: Curve from Set 2.
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Fig. 12. Measured J vs. w. Left: Curve from Set 1. Right: Curve from Set 2.

these results. However, the maximum value of J, which is the area under the complete o—w curve, is known,
cf. Fig. 10. This value gives an important hint on the shape of the o—w curve that is used in the sequel to
determine the complete curve.

Fig. 12 shows typical J-w curves from the two sets. As shown, the curves are monotonically increasing
until the measurement of w fails to give any more reliable data. The curves generally start with a convex
part, followed by an approximately linear part. The curves end with a concave part.

For comparison, all the J-w curves are shown in the same graph in Fig. 13. There is a small scatter
between most curves from Set 1. The exception is the one experiment which initially fractured adhesively
which fits well to the curves of Set 2. The small scatter between the other curves in this set is attributed to
noise in the interference patterns which gives rise to less accurate measurements of w. The results from Set 2
show less scatter. Most of these curves virtually coincide up to 30 um indicating that the experiments are
performed properly. Except for the one curve from Set 1 discussed above, all the curves from Set 1 are
located above the ones from Set 2. This indicates that the specimens in Set 1 are stronger.

The most straightforward method to determine the 6—w curve from the experimental results is to dif-
ferentiate the data. This inevitable results in large scatter in the o—w curve since small errors in the measured
data add up to give large errors after numerical differentiation. A better method is to use a series of
functions to approximate the J—w curve and then differentiate the series. Following Fernberg and Berglund
(2001) we use the series

Jw) nw
7 ;Alexp< iWref) (20)

where the parameters 4; are determined by the least square method. The parameters J. and w,s correspond
to the maximum values of J and w recorded in the experiment. A typical result of a least square fit of
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Fig. 13. Measured J vs. w from both sets.
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Fig. 14. o—w. Dashed line: result from adjustment of Eq. (20). Solid line: result from adjustment of Eq. (21).

Eq. (20) to experimental data is shown in Fig. 14. As shown in the figure, the o—w curve can roughly be
divided into three parts; first a linearly increasing part corresponding to a linearly elastic response, then a
plateau with a constant limiting stress and finally a descending part ending with zero stress and initiation of

crack propagation.

4.4. Constitutive model

As explained above, the curves end at about 30 um due to problems with the measurement of w. Thus,
with limited knowledge of the descending part of the o—w curve, we need some method to extrapolate the
curve to ¢ = 0. The procedure used here is to divide the curve into three parts: one linearly increasing part,
corresponding to a linear elastic response; one plateau; and finally, a parabolically descending part ending
with fracture of the adhesive. Thus, the following o—w curve is proposed
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The o—w curve is illustrated in Fig. 15. The curve has five free parameters. However, we know that the area
under the curve shall equal the maximal value of J = J.. This decreases the number of free parameters and
only four parameters remain to be adjusted to the experimental data.

The o—w curve is thus parameterised using the four parameters oy, w;, w, and ws. Eq. (21) is first in-
tegrated and the four parameters are adjusted to the experimental J—w curve by minimising the quadratic
error between the two curves. The resulting parameters are given in Table 1. Fig. 16 shows the experimental
and the adjusted curve taken from one experiment in Set 2. The adjustment of the curves in Set 2 is
generally better than those for Set 1.

All the adjusted o—w curves are presented in Fig. 17a,b. Within each set, the curves appear fairly similar.
However, there are two distinct differences between the two sets. The mean value of the maximum peel
stress is 25 MPa for Set 1 and 20 MPa for Set 2. The mean value of the fracture energy is 820 J/m? for Set 1
and 760 J/m? for Set 2. There are at least two possible reasons for these discrepancies:

(1) The specimens in Set 2 have a lower interfacial strength which is manifested by the initial cohesive frac-
ture. This is the most probable reason. If this is the case, the result demonstrates the importance of
achieving a strong adhesion in the interface between the adhesive and the adherend.

(2) The two sets are manufactured at different times. The manufacturing process (curing time, etc.), in-
evitably induce residual stresses in the adhesive layer. These stresses are not easy to determine, but they

J[N/m]

0
0 10 20 30 40 50
w [um]

Fig. 16. Experimental and adjusted ¢ vs. w curve from Set 2. Solid line: experimental data. Dashed line: adjusted curve. Note that two
curves are present in the graph.
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Fig. 17. (a) All adjusted o vs. w curves from Set 1. (b) All adjusted ¢ vs. w curves from Set 2.

affect the apparent fracture energy (cf. Nairn, 2000). Unfortunately no information on the curing time
is available.

Moreover, for the specimens in Set 2, the thickness of the adhesive layer is thinner in the middle of the
specimen. If the adherends were planar before the adhesive bonding, this would result in compressive re-
sidual peel stresses at the start of the adhesive layer. This should give a stronger bond. However, the ex-
periments show the reversed behaviour.

Bulk tests performed on the adhesive give a maximum tensile strength of about 30 MPa. Considering the
high level of constraint, it is possible to assume a state of uniaxial strain in the present experiment instead of
a state of uniaxial stress as in the bulk test. Using the von Mises criteria, the relation between the expected
peel strength o, and the yield strength oy is given by

1—v

gy (22)

With v = 0.4 we would expect the maximum peel stress to be oy =~ 90 MPa. This is 4 to 5 times larger than
the measured one. > On a micromechanical level, the low value of g, might be an effect of the local stress
concentration at the bi-material corners between the adhesive and the adherends. This is probably an
important factor in reducing the strength of the adhesive layer. However, the geometrical variations, on a
micro scale, between the individual specimens are large and would suggest a larger scatter in peel strength
than measured. Moreover, in many experiments the cracks do not appear to initiate at the interface.
Another difference between the stress state in an adhesive layer and in a tensile test is the substantial
difference in hydrostatic stress. In the elastic regime, with the present value of Poisson’s ratio and with a
specified peel/tensile stress, the hydrostatic stress is three times larger in the adhesive layer than in a tensile
test. In the plastic regime, the strong constraint that the adherends exerts on the adhesive even enlarges this
difference. The large hydrostatic stress might prove to be an important factor in explaining the low value of
ao. On the structural mechanical length scale, implicit in the adhesive layer theory, the small value of gy can
be modelled as an effect of damage in the layer.

The maximum elongation of the adhesive layer is about 80 um. This can be compared to ordinary bulk
(tensile) tests that give a fracture strain of only about 5%. With the present thickness of the adhesive layer
(0.2 mm) the corresponding elongation is 10 um. This is only one eight of the measured value. Therefore,
the critical strain measured in a uniaxial tensile test is inappropriate as a fracture criterion.

3 It might be more appropriate to use a pressure modified von Mises criteria. However, the difference between the yield strength in
compression and tension is too small to explain the present effect.
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5. Validation of the experimental method

Contrary to ordinary experimental methods to determine the constitutive properties of a material, the
present method utilizes a non-uniform state of stress and relies on the use of an inverse solution for the final
determination of the properties of the adhesive layer. Certain requirements have to be met in order for the
inverse solution to be valid. The critical requirements are:

(1) Elastic behaviour of the adherends. If the adherends develop plastic zones near the start of the adhesive
layer, then these zones will contribute to increase Jg; this will disturb the measurements.

(2) No reversed loading of the adhesive layer from an inelastically deformed state. The J-value of the adhesive
layer, Eq. (9), relies on a unique relation between the peel stress and the elongation of the adhesive
layer. If the adhesive layer deforms inelastically a unique relation is still valid as long as unloading does
not take place during the experiment.

(3) Valid measurement of the elongation of the adhesive layer. The adherends will deform anticlastically due
to the bending moment. However, the elongation is measured at the surface of the adherends. Thus, the
elongation at the centre of the adhesive layer will be somewhat larger than at the surface. This effect
should be negligible for the measurement to be valid.

(4) Sufficiency of a local theory for the behaviour of the adhesive layer. This point is related to the second
point above. The peel stress is assumed to depend on the local elongation of the adhesive layer, this
is of course a simplification; not only the local elongation of the adhesive layer between two neighbour-
ing points at the adherends determines the peel stress at these points, also the deformation in a neigh-
bourhood of these points influence the representative stress.

The first requirement is easily checked by means of the experimental results. Considering the maximum
force and the unbonded length L together with the geometry of the adherend, the maximum beam bending
stress is about 370 MPa for the experiments in Set 1 and 270 MPa for Set 2. This should be compared to the
yield strength that is larger than 470 MPa for the present alloy. It can be concluded that the adherends
deform elastically. This is also verified by visual inspection of the specimens after the experiment.

The influence of anticlastic bending, requirement 3, is studied using elementary beam bending theory (cf.
e.g. Timoshenko and Goodier, 1970). Since the peel stress is small, its influence on the deformation of
the adherends is neglected. The cross section of the lower beam is shown in Fig. 18. The vertical dis-
placement v is given by

22

2R

o(y,2) = =W (23)

where R is the radius of curvature of the beam given by R = El,/M = El,,/FL and v, is Poisson’s ratio for
the adherends. The difference between v at the surface and at the interior is then given by

P00 = o =3.5) o = 5.0) =opEE 29

where b =4.4 mm, L =50 mm, £ =206 GPa, v, =0.3 and # =5 mm. The total contribution to the
separation w is 25. The quotient 2 /w, given in Fig. 18, is a measure of the error due to anticlastic bending.
It can concluded that it is possible to neglect the influence of anticlastic bending.

The second and fourth requirements are less easy to check. These are tested using finite element simu-
lations of the experiments; this is the subject of the following sections.
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Fig. 18. Left: Anticlastic bending of the cross section of the lower beam. Right: Relative error due to measurement of elongation of the
adhesive layer at the outer surface.

5.1. Numerical method

The finite element method is used to simulate the experiments. In these simulations we make use of the
commercial program ABAQUS ver. 5.8. The relatively small peel stress o, that affects the adherends
suggests that the adherends can be modelled using two node beam elements. Here we use the beam element
type B23. This element is based on Euler—Bernoulli beam theory. Consistent with the assumption of a o—w
relation the non-linear elastic spring element, SPRINGI is used to model the adhesive layer. Due to the
symmetry, only the upper adherend is modelled. The total length of the specimen is 115 mm and the
unbonded length L is set to 78 mm for the specimens of Set 1 and 50 mm for Set 2. These values differ
somewhat from the true ones, cf. Table 1. The width, b, is 5 mm for Set 1 and 4.4 mm for Set 2. Fur-
thermore, the height of the adherends is 4.5 mm for Set 1 and 5 mm for Set 2. The adherends are made of
steel with the yield strength larger than 470 MPa. Appropriate values of Young’s modulus and Poisson’s
ratio for the steel adherends are 206 GPa and 0.3 respectively. To simplify the input of data and the in-
terpretation of the results, all spring elements are located equidistantly along the specimen. All spring
elements, except the first, have the same force—elongation relation given by F(w) = a(w)bl. where . is the
distance between the spring elements. The first spring element only represents the action of the adhesive
element to the right of the node. This element has the force-elongation relation Fp,(w) = a(w)bl/2. To
describe the o—w curve, two linear segments are used to describe the first two parts. Between two to five
segments are used to describe the descending part. The chosen number of segments depends on the cur-
vature of the curve.

The length of the beam elements, /., is chosen small enough to accurately capture the gradients of the
displacement field. Results from use of an exact analytic solution (Stigh, 1987) indicates that a length of
about 0.2 mm should be enough. However, the model is very simple, therefore we finally chose 1000 beam
elements. This results in an element length of /. = 0.115 mm. Consequently, in Set 2 there are 566 spring
elements in the mesh. As in the experiments, a simulation consists of a monotonically increasing dis-
placement of the loading point.

5.2. Results of simulation

Fig. 19 shows the experimental and simulated F—A curves. The curves from Set 1 show a fairly good
agreement between the experimental (solid) curve and the simulated (dashed) curve. The slopes of the two
curves agree well at the beginning, but at a displacement of about 1 mm the two curves diverge. In the
experiment the maximum force is obtained at A ~ 3.4 mm whereas it is obtained at A ~ 3.6 mm in the
simulation. However, the value of the maximum force is practically the same. The curves from Set 2 vir-
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Fig. 19. Experimental (solid line) and simulated (dashed line) F—A curves. Left: Specimen from Set 1. Right: Specimen from Set 2.
Vertical lines indicates: maximum value of F according to experiment (solid line); maximum value according to simulation (dashed
line); and crack propagation according to the simulation (dotted line).

tually coincide until the maximum force is obtained. The maximum force is obtained at almost the same
value for the two curves, A = 1.5 mm. The dotted lines indicate at which displacement a crack, according to
the simulation, starts to develop in the adhesive layer, this point is always to the right of the point of the
maximum force.

In Fig. 20 the experimental and the simulated 6-A curves are shown. The simulation, taken from Set 1,
shows very good agreement with the experiment. However, Set 2 shows less good agreement between the
experiment and the simulation.

The J—A curves, displayed in Fig. 21, show a satisfying agreement between the experiments and the
simulations up to the maximum value of J. From this point, the simulations give a constant J. This is a
result of using a unique o—w curve, cf. Eq. (9). However, in the experiments J decreases after a crack has
developed.
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Fig. 20. Experimental (solid line) and simulated (dashed line) 6—A curves. Left: Specimen from Set 1. Right: Specimen from Set 2.
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Fig. 21. Experimental (solid line) and simulated (dashed line) J—A curves. Left: Specimen from Set 1. Right: Specimen from Set 2.
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Fig. 22. Elongation of different elements along the adhesive layer w vs. A/A.r during an experiment. A.r corresponds to crack
initiation.

It should be observed that the results of the simulations are sensitive to the length L. Although the final
part of the o—w curve is not measured, the simulations show that it is possible to re-create the experiments
both qualitatively and quantitatively, thus supporting the extrapolation made in the curve fitting procedure.

The proposed method rests on the assumption of a unique o—w relation for the adhesive layer. If un-
loading from a non-elastically deformed state takes place, the proposed method fails since the path at
unloading differs from that at loading. However, if the adhesive experiences monotonically increasing or
decreasing elongation during an experiment then the difference between a unique o—w curve and the true
one is without significance.

Fig. 22 shows the elongation of the adhesive at consecutive points along the adhesive layer, the distance
between the points is 2.3 mm. The first curve shows the elongation at the start of the layer. This part of the
adhesive experiences a monotonically increasing elongation, as should be expected. Elements of the ad-
hesive further inside the layer first experiences a compression, later followed by an elongation. The initial
compression is understood from the well-known solution for a beam on an elastic foundation.

The maximum compression of any element of the layer does not exceed 2 um which corresponds to
o = —19.3 MPa. Moreover, the elastic limit in compression is probably larger than that in tension. Thus, no
inelastic deformation is expected at any part of the layer before it starts to elongate. Moreover, no element
of the adhesive experiences unloading from an elongated state before a crack starts to propagate. Thus, the
use of a unique stress—elongation relation in the theoretical basis for the method is consistent with the
results of the simulations.

The forth requirement stated above, namely the sufficiency of a local theory, is less easy to validate.
However, the good agreement between the simulated and experimental results indicates that the present
“adhesive layer” approach is sufficient.

To complete a validation, the possibility to use experimentally obtained relations on other structural
configurations should be tested. A numerical analysis should anticipate the behaviour of the structure and
onset of fracture. However, one should be careful. It is important to choose the structure with care. The
specimen should be chosen such that the shape of the stress—elongation law has a substantial influence on
the structural behaviour. This is not the case for many configurations. For instance, the structural be-
haviour of a DCB-specimen is accurately governed by the properties of the adherends and J of the adhesive
layer if L is large enough.

6. Conclusions and discussion

In this paper the g—w curve for an epoxy adhesive has been determined by use of equilibrium of energetic
forces. The results have been verified numerically using FE simulations. The agreement between the ex-
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periments and the simulations is good. The results show that the constitutive law for the adhesive can be
described by an initial linear part followed by a constant part and an ending descending part. Two sets of
specimens with different geometries were tested. The specimens in Set 1, which fractured cohesively, were
found to be stronger than the specimens in Set 2, which fractured adhesively. The mean value of the
maximum tensile strength is about 25 MPa for Set 1 but only about 20 MPa for Set 2. Compared to or-
dinary bulk tests the maximum tensile strength is found to be 20% lower for Set 1 and 35% lower for Set 2.
The mean value of the fracture energy was found to be 820 J/m? for Set 1 and 760 J/m? for Set 2. It is
believed that there are at least two possible reasons for the diverging values between the two sets.

(1) For Set 2 the interface strength between the adherend and the adhesive is weaker than the strength of
the adhesive.

(2) As the two sets are manufactured at different times it is possible that the residual stresses are different in
the two sets.

The proposed method rests upon assuming a constant adhesive thickness. This is clearly not the case in
these experiments though the good agreement between the simulations and experiments indicates that the
effect is negligible. In order to validate the method, further experiments must be performed with different
geometries. Such experiments are now planned. In these experiments we will change the method to measure
w in order to capture the complete o—w curve. An advantage with the present method is that the o—w curve
is determined from a limited number of measurable quantities, e.g., the present method requires only the
width of the adherends. The method also comprises a simple load case. The o—w curve can easily be im-
plemented into any commercial FE-program using cohesive elements to simulate adhesive joints in struc-
tural analysis. It should be recognised that a complete constitutive description of an adhesive layer must
also incorporate models of the behaviour at unloading and the effect of mixed peel-shear loading. A nu-
merical method to achieve this is developed by Cannmo et al. (1995). Complementing the present work,
Alfredsson (2003a,b) and Alfredsson et al. (2003) develop a method to measure the stress—deformation
relation in shear. This curve appears to be an enlarged version of the peel curve.

It might appear even simpler to determine the curve using the butt joint. This would, however, require a
very stiff tensile test machine to catch the descending part of the curve. The descending part is important
since it determines the conditions at crack propagation. Moreover, testing of but joints requires very careful
preparation of the specimen and testing machine to secure rotational symmetry.

It should be recognised that the present o—w curve is not a material law in the conventional sense, i.e. it is
not expected to be independent of all structural features. Specifically, the present constitutive law is ex-
pected to depend on the thickness of the layer. It may also depend on other factors, e.g. on the adherends,
the loading rate and the residual stresses. How these factors influence the constitutive law remains to be
determined. However, it is reasonable to assume that the present law should be applicable to different
structures as long as the thickness and the manufacturing process of the adhesive layer remain the same.
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